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Abstract--The motion of spherical, solid particles, liquid droplets or gas bubbles along their line of centres 
is considered. Conditions are limited to quasi-steady creeping flow and results are presented for drag 
coefficients and streamlines in these systems. Various interactions between two particles are reviewed and 
applications to gravity settling and droplet coalescence discussed. 

1. INTRODUCTION 

The application of hydrodynamic theory to the behaviour of solid and liquid particles moving in 
a viscous medium at low Reynolds numbers has received increased attention in recent years in 
connection with problems in chemical, geological, mining and biomedical engineering, air 
chemistry and meteorology. An excellent review summarising the current state of knowledge in 
this field and pointing out the utility of such knowledge in applications is given by Brenner 
(1971). 

The theoretical treatment of this subject has grown out of the work of Stokes (1851) for a 
simple spherical solid particle. The extensions to account for translation of a spherical liquid 
droplet through a viscous fluid were proposed by Rybczynski (1911), Hadamard (1911) and 
Boussinesq (1913). The problems associated with the shape of droplets undergoing distortion, 
when inertia effects are no longer negligible, were discussed by Taylor & Acrivos (1964) and 
Pan & Acrivos (1968). 

In most technical applications, multiple particle systems are more important than the single 
drop or particle situation. Here the latter conditions can only represent the limiting case at low 
dispersed phase hold-up. In dispersions, particle interactions can be of primary importance. In 
this paper we will discuss the problems relating to motion of two particles and more particularly 
the motion along their line of centres. In this connection the approach of a particle (solid or 
fluid) towards a plane (surface or interface) may be considered as a limiting case. 

An approximate solution to the motion of a solid spherical particle approaching a solid plane 
for the case where the radius of the sphere is small compared with the instantaneous distance 
of its midpoint from the plane was provided by Lorentz (1907) using the method of reflections 
technique. Smoluchowski (1911) subsequently exploited the same technique to determine the 
interaction between two spheres. Fax6n & Dahl (1925) obtained an approximate solution for the 
case of two unequal spheres moving with arbitrary constant velocities along their line of 
centres. The special case of equal spheres moving towards each other with equal velocities is 

equivalent to the approach of a single solid sphere towards a free surface. Wakiya (1957, 1967) 
applied this technique to two spheres in the presence of a plane wall which gives as a limiting 
case the resistance due to the motion of a single sphere towards a plane wall. Approximate 
solutions for this class of problems using the method of reflections are described by Happel & 
Brenner (1965). Hetsroni & Haber (1970) used this method for the motion of two droplets. 
Convergence of the solutions obtained by the method of reflections is poor when the spheres 
are  c lose .  

An exact solution of the linearised Navier-Stokes equations for the steady axisymmetric 
motion of a viscous fluid at low Reynolds number, posed when two spheres translate with equal 
velocities, has been obtained by Stimson & Jeffery (1926) using a bipolar co-ordinate trans- 
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358 E. RUSHTON and G A. DAVIES 

formation. The problem was formulated for arbitrary sized spheres but results were presented 
only for the equal sized sphere problem. Pshenay-Severin (1958) extended this solution and 
presented results for the case of unequal particle velocities. 

Fax6n (1927) showed that the expression obtained by Stimson & Jeffery for the force acting 
on either of two equal sized solid spheres approached a limit as the minimum clearance 
between the spheres tends to zero. Cooley & O'Neill (1%9a) have considered the translation of 
unequal solid spheres in contact and also give data for the force on unequal spheres not in 
contact. Their results reduce to Fax6n's limit of the Stimson-Jeffery forces for equi-sized 
spheres. 

The solution to the limiting case problem of a solid particle approaching a free surface or a 
solid plane has been presented by Brenner (1%1) and Maude (1%1). The solid sphere-free 
surface problem is equivalent to the case of the approach of identical rigid spheres as 
considered by Frankel & Acrivos (1%7). 

Numerical convergence of the formal bipolar solution is poor as the gap width between the 
two surfaces tends to zero. To overcome this difficulty Cox & Brenner (1%7) employed an 
asymptotic procedure for the quasi-steady solid sphere-solid plane wall problem. Slow stream- 
ing flow past a small stationary particle in contact or near a large obstacle has been considered 
by Goren (1970) and Goren & O'Neill (1971). Cooley & O'Neil (1%9b) considered the approach 
of a sphere towards a plane wall or stationary sphere. A detailed analysis is made of the 
asymptotic behaviour of the solution as the minimum clearance tends to zero. Hansford (1970) 
subsequently used the same method to calculate the hydrodynamic force experienced by either 
of two identical small solid spheres approaching each other with the same velocities for small 
gap widths. Cox & Brenner (1%7) using singular perturbation methods calculated the first order 
effects of both the convective and local acceleration inertial terms in the Navier-Stokes 
equations. The force on the particle differs, in contrast to the quasi-steady analyses, according 
to whether it moves towards or away from the wall. 

The possibility of separation of a flow from a boundary is a recent development in the study 
of Stokes flows. Davis et al. (1976) considered the steady flow past identical solid spheres and 
Davis & O'Neill (1977) that of flow past a solid sphere in the vicinity of a plane wall. They 
pointed out that the flow separates from the solid boundaries when they are sufficiently close 
together. When the sphere touches either the sphere or the wall the fluid rotates in an infinite 

set of nested ring vortices. 
Related problems dealing with the slow rotation of two spheres perpendicular to their line of 

centres have been solved in bipolar co-ordinates by Jeffery (1915) and Wadhwa (1958). 
An analytical solution using the Stimson & Jeffery approach was provided by Bart (1%8) for 

the problem of a liquid droplet approaching a plane interface between two immiscible fluids. 
Wacholder & Weihs (1972) gave results for a pair of identical fluid spheres falling along their 
line of centres. Rushton & Davies (1970, 1973) and Haber et al. (1973) considered the relative 
motion of two arbitrary droplets along their line of centres and provided explicit expressions 
for the corrections to the Hadamard-Rybcznski drag force. Rushton & Davies (1974) 
subsequently published the resulting velocity profiles in both continuous and dispersed phases 
illustrating the marked effect that the fluidity has on the motion. Reed & Morrison (1974) 
employed the tangent sphere co-ordinate transformation to analyse the motion of two un- 
deformed fluid spheres in apparent contact translating along their line of centres. 

In addition to knowing that the methods used lead to suitable approximate solutions of the 
quasi steady equations of motion, it is desirable to know how well the predicted effects will be 
realised physically. Experimental work has lagged behind the theory; this is because until very 
recently the techniques available were not sufficiently accurate. The problems are not merely 
resolved by using high speed cine photography but are merely associated with ensuring the 
correct orientation of the particles. Notwithstanding this, some of the cases enumerated in 
figure 2 and table 1 have been studied experimentally, namely, referring to figure 2, cases 6, 12, 
14, 15, 16, 18 and 19. 
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Experimental confirmation of the Stokes' law correction for a solid sphere approaching a 
plane boundary has been obtained by MacKay & Mason (1%1) and MacKay et al. (1%3). 
Considerable data are now available which indicate good agreement for the case of two solid 
spheres, and are reviewed by Happel & Brenner (1%5) and Steinberger et al. (1%8). Stein- 
berger et al. conclude that the range of validity of the quasi steady flow equations is much more 
restrictive than commonly considered. 

Experimental confirmation of the phenomena observed for fluid droplets is much less 
conclusive. Allan et al. (1961), Altrichter & Lustig (1937) and Morgan (1961) considered the 
settling of fluid particles toward a fluid surface. Many of these experiments were conducted 
with exceedingly small droplets in order to achieve low Reynolds number criteria and to reduce 
droplet distortion with a corresponding reduction in fluid circulation within the droplet, Levich 
(1%2). In order to confirm the validity of the theory for a fluid droplet approaching a flat fluid 
interface, Bart (1968) conducted experiments using various combinations of liquid, air and solid 
phases. The results suggest qualified support for the theory. The important region of small gaps 
poses many interesting questions due to distortion of the fluid interfaces. This deformation 
stage has been studied by many workers who have been interested primarily in the coalescence 
phenomena associated with liquid dispersions, see for example Jeffreys & Davies (1971) and 
Hartland (1967). 

In this paper we shall consider the results of the drag coefficients and interaction between 
two droplets or between a single droplet in the proximity of a plane fluid interface. The 
conditions under which the governing equations of motion are valid are discussed and the 
streamlines for various cases are presented. Finally, the application of the theory to the gravity 
settling of droplets and to the coalescence of droplets will be considered. The effect of droplets 
of different densities is considered and conditions for entrainment of droplets derived. 

2. T H E O R Y  

The flows considered in this paper are axisymmetric; therefore, the Stokes stream function 
exists. The geometric configuration is shown in figure 1. Three regions can be defined, i and 2 
the dispersed phase(s) and 3 the continuous phase. The problem may be set up quite generally 
with all three phases different. If either (or both) phases 1 and 2 are solid then the respective 
viscosity goes to infinity. The radii of the particles may take on any positive values and the 
velocity of the particles in the general case are different. In a gravitational field the particle 
velocities will of course be related via the buoyancy and drag forces. A full analysis of the 
problem up to the derivation of expressions for the drag forces on the particles has been 
previously presented, Rushton & Davies (1973), but to facilitate the extensions covered in this 
paper some review of the solution will be given. It is also necessary to reassess the conditions 
under which the solutions are valid. 

FLUID3 

 To,r ~constant 
J--- -~R- -Z=O(-:~=O) 
hz I ~ / ~  FLUID 2 

U2" I 

Figure 1. Geometric configuration of the particles. 
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For incompressible Newtonian fluids, the fluid motion in the three distinct regions of flow 

may be described by the Navier-Stokes equations of motion: 

and 

O__UU + u.  Vu+-l Vp = vV2u [2.1] 
dt p 

V. u = 0 [2.2] 

where u and p are the local fluid velocity and pressure respectively. 
In numerous engineering applications the Navier-Stokes equations may be linearised since 

the quadratic inertial terms, u. Vu, are small compared with the viscous terms. The problem 
considered here is inherently unsteady. In order to assess the relative magnitudes of the time 
dependent terms, c~u/c~t, and the inertial terms compared to the viscous terms, the following 
dimensionless quantities (denoted by an asterisk*) are introduced for velocity, time and vector 
gradient: 

Thus 

u t*=--tU and V*=LV. 
u * ~ - U  , 

u'Vu {UL~ V'u* 
= a n d  

duldt [UL2X c~u*/c~t* 

where L is a length scale over which the viscous terms change, U is a characteristic fluid 
velocity, e is a characteristic distance in a direction parallel to the flow, namely the minimum 
distance of separation of the particles, and d U is the time scale for the problem. The unsteady 
terms will be negligible compared to the viscous terms provided that UL2/ue ,~ 1. 

When e* = dr  = 0(1), L = r, a characteristic radius, and the flow will be essentially steady 
for Re = Ur/~,~. 1. When ~*,~ 1, L = ~ in the neighbourhood of the gap and the flow is 
essentially steady for Udp '~ 1 or Re ,~ (e,)-l. In the rest of the fluid, L = r, the conditions for 
steady flow require Re ,~. ~*(,~I). Hence steady flow prevails in the whole of the fluid if Re ~. ~*. 
Cooley & O'Neill (1969b) showed that this condition is satisfied in practice by using the 
experimental data of MacKay & Mason (1961) for solid spheres. 

Therefore, the inertial and local acceleration forces may be neglected compared to the 
viscous forces for sufficiently small values of the Reynolds Number if [V*U*/V*2U*I and 
[(au*/at*)]V*Eu*[ are of order unity and U, L and ~ are truly representative parameters. 

The choice of ~ as the characteristic dimension in the direction parallel to flow signifies the 
pertinent contribution of the time dependent terms. Such a contribution is not emphas~sed if h, 
the distance of centre of the droplet from the plane z--0,  is chosen as the characteristic 
dimension, Bart (1968), Wacholder & Weihs (1972). In such a case the two separate physical 
conditions would be satisfied simultaneously for small values of the translational Reynolds 
number (rUlv). 

Introducing the Stokes stream function ~b,-, the subscript i corresponding to the flow regime i 
(i = l, 2, 3) figure 1, [2.1] may be written: 

E'~i = 0 [2.3] 

where 

E 2 ~2 a 1 
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Due to the geometry of the fluid interfaces the fluid motion will be described in a bipolar 
co-ordinate system (¢, ~/,¢,), Happel & Brenner (1965), which is related to cylindrical co- 
ordinates (z, R, ~b) by 

R = c sin st 
cosh ~ - cos r / '  

where c is a positive constant. 

c sinh st 
z c o s h s t - c o s ~ '  4~--~ [2.41 

Two fluid spheres external to each other travelling in the z direction corresponding to the 

surfaces ~: = ¢1 (>0) and st = st2 (<0). sty, st2 and c are defined by the relations: 

st1 = cosh- '  (hJrl); stz = cosh -1 (hgrz) [2.5] 

and c = r l  sinh st~ = --rE sinh st2. The solution of [2.3] is: 

~b~ = (cosh st - S )  - m  ~ u .~ ( s t )C~J~(S )  [ 2 . 6 ]  
n = O  

where S = cos ~. 

u.i(st) = a.i cosh (n - ll2)st + b,i sinh (n - l/2)st + c,i cosh (n + 3/2)st + dni sinh (n + 3/2)st 

[2.71 

and C:~+/~(S) is a Gegenbauer polynomial of order (n + 1) and degree -1/2. The constants a.i, 
b.~, c.~ and d.~ (i = 1,2, 3) are to be determined by the boundary conditions. 

The boundary conditions (in the absence of surface active agents or in the absence of 
concentration gradients of solute(s) in the interface) express the continuity of velocity and 
shear stress at each fluid interface, Batchelor (1967). For normal stresses it has been assumed 
that any discontinuity in the normal stress is balanced by the surface tension forces. The 
condition for this is that the surface tension forces, tri/r i, should be large compared to the 
deforming viscous forces of the normal stress due to the motion, or order t~3Ui/•. That is: 

/L. it3 -~-" < 1  ( j = l , 2 ) .  [2.8] 
tr i • 

This dimensionless group illustrates the effect of the presence of adjacent boundaries on the 
shape of an approaching droplet. 

In addition the velocity components must remain finite at the centres of the droplets. 
Applying the boundary conditions yields a system of linear algebraic equations for the twelve 

constants a.i, b.i, c.i and d.i (i = l, 2, 3). The velocity components (u~i, u~i, u#~) can be obtained 
from the solution of [2.3], [2.6], and from the following relationships: 

(cosh s t -  S) 2 a@i [2.9.1] 
u~.i = - c 2 aS ' 

(cosh s t - S) 2 0~i [2.9.2] 
u'7" = - c 2 sin ~ ast ' 

l /6i  = O, 

for i = 1, 2 and 3. 

[2.9.3] 
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In order to illustrate streamlines in the various phases and to compare results for particular 
cases with previously published data it is convenient to compute the velocity components in 

cylindrical co-ordinates (URn, Uzi, U~). 

1 
URi = (cosh ,~ - S )  ((u,~i sin '7 sinh s ¢ + uni(1 - S cosh ~:)), [2.10.1] 

1 
u,i = (cosh ~ - S) (U~:i(1 - S cosh s ¢) - uni sin 71 sinh so). [2.10.2] 

Thus the velocity components in either bipolar or cylindrical co-ordinates may be obtained 

from [2.6], [2.9] and [2.10] in each of the three fluid regions. No restrictions apart from that of 
shape have been imposed. The two particles can be physically the same with different radii. Gas 
bubbles can be considered by allowing the viscosity to be very small (g; ~ 0: i = 1, 2). Similarly, 
solid particles can be considered by setting the appropriate viscosity to infinity ( ~  = oo: i = 1, 2). 

By taking combinations, all the binary interactions between gas bubbles, liquid droplets and 

solid particles in a viscous fluid can be studied. Thus, providing the conditions relating to 
creeping flow are met, the solution has potential application to flotation, settling, coalescence 
and sedimentation processes. 

It should be emphasised that in external force fields some interrelation of the various 
parameters exist. As an example the settling of liquid droplets through another immiscible 
liquid can be considered. The settling velocities, U1 and /72, are functions of the droplet radii 
and cannot be selected arbitrarily. To allow for this recourse must be made to the drag forces 
acting on each droplet, Rushton & Davies (1973). 

3. D R A G  C O E F F I C I E N T S  

The solution to the problem of motion of two arbitrary fluid droplets along theft line of 
centres must degenerate into a number of limiting cases. A classification of such problems is 
shown in figure 2. The general solution for drag coefficients will first be presented and then 

comparisons made with limiting cases. 
The forces opposing the motion on two unequal fluid spheres s r = ~:t = a and s r = ~:2 = # 

GENERAL SOLUTION I 
1 iUNEQUAL FLUID DROPLETS 

13 I 
FLUID SPHERE-PLANE FLUID 
SURFACE )lJ 1 +/142+#3 I q T T  

IBQrt-Qpp . . . .  h,ng sphere I I L____ .  
I 14,  16 I 17 

COALESCENCE [__[SOLID SPHEREL___IFLUID SPHERE 
[ #UI=)U2-~)U3 1 I-SOUD PLATE I I-SOLID PLATE I 

I • I I#2-* I 
GAS BUBBLE I JMaude, Brenner J ' 
FREE SURFACE 15 I^IGAs BUBBLE 
I /UI-0"/U2 I ~-SOLID PLATE 

#1=O ~2~'~ 

)J1 '~)J 2 -/U3 119 
FLUIDS ON EITHER 

t SIDE OF A BOUNDARY 
HAVE IDENTICAL 
VlSCOSIT ES 

I 
I 

21 GEOMETRICALLY IDENTICAL 
FLUID SPHERES /UI=~}.L2~-H3 

MOTION IN OPPOSITE 7 [ NOTION IN 13 
D,RECT,ON SANE O,RECT,O. 
Ol/U2= -I UI/U2=  

I 1 8 I z. 
IEQUIVALENT TO I FLUID SPHERES I IFLUID SPHERES I 

IFLUID SPHERE 111 
H -FREE SURFACE I I 9 I 5 I I °AS BUBBLESI II GAS BUBBLES I 

I I SOLID SPHERES SOLID SPHERES I l[soLIO SPHERE 112 i 6 
H-FREESURFACEI I Ul-U2+:  
H /132 =0 )U, 1 -i,~o I 10 St mson& Jeffery 
I IMoude, Brenner ] 

Figure 2. Classification of the motion of two arbitrary droplets along their line of centres. 
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travelling at a velocity Ul and U2 in the z direction are: 

n(n + 1) , , 
F,,,t3 = 87r/x3c .:~l (2n - - - l ~ n +  3)(A.1 +- A.2), [3.1] 

where 

(Anl + An2)A = UEAI * + U1A2, 

( A n I - A n 2 ) A  = U2A~'+ UIAt .  

The A*'s are defined in the appendix. 
The solution may be written in the analogous form which is more useful for comparing with 

previously published solutions in that it reduces to a form similar to Stokes' law. Thus: 

F~ = 67rl~3rl(au Ul + a12U2), 

F~ = 61r/~3r2(a21 UI + a22 U2), 

[3.2] 

[3.31 

where 

4 ~ n(n + 1) A* 
all = ~ sinh a ,=1 (2n - l)(2n + 3) AT' 

4 ~ n(n + 1) ,5,* 
a l 2 = 3  s inha  ,=1 (2n - l)(2n + 3) A*' 

sinh/3 
a21 = - a l z  sinh a ' 

4 ~=l n(n + 1) A* 
a22 = - ~ sinh/3 (2n --- l ~ n  + 3) a*" 

In a form equivalent to Stokes' law [3.2] and [3.3] become 

F~ = 61r/z3rl U1A~, [3.4] 

F 0 = 6"n'/z3r2 U2A 0, [3.5] 

where A~ and Aa are the correction factors which must be applied to Stokes' law and are 

functions of a,/3, #d/~3 =/£, /~2/~3 =/£2 and U2IU I. 

This solution may now be used to explore related problems outlined in figure 2. Equation 
[3.1] may be used to formulate equations for the corrections to Stokes' law for a variety of two 
particle problems which themselves must reduce to the solution for a single particle when the 
distance of separation is very large. The equations for different cases are shown in table 1 with 
appropriate references for consistency checks. 

Tabulated values of Aa and A~ for all the cases shown in figure 2 at various values of a,/3, 
hllrl, h2[r2, /£1 and /£2 are given by Rushton (1974). The numerical solutions are rapidly 
convergent except in cases when the dimensionless separations, a , /3  are small. The solutions 
involving large values of either/£1 or g2 or both are the more slowly convergent of the set. 

As illustrations numerical results for cases 4, 6 and 8, figure 2 and table l, are shown 
graphically in figures 3 and 4. The ordinate is the variation in the relative achievement of the 
terminal velocity of a fluid sphere (Ar)~ which is plotted as a function of the separation 
parameter F = e -~. The correction to Stokes' law for a fluid particle is F = 6zr/x3rAU. Ar is 
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t f 

rl 
A ~  

I0 

Io- 

/ 
P,=P2 -~ solid sphere-solid plote~/ 

/ 
P,=P2 -~oo solid spher~ solid sphen2 UI/U2--I / 

Pr~ k'£ o solid sphere free s u H o c ~ . . . ~  / 
/ - > ,  

~=pz:O c#s bubbi~ gGs bubble bl/d2---I / / / .  

fluid sphere in on infinite medium 

p,=~z~O o solid sphere solid sphere UI/U2=I' 

no-3 

P:exp(-~) 
I I I 

io ~2 IO H I 

Figure 3, Relative achievement of the terminal velocity for a fluid sphere and a solid particle. 

I0  

0 8  

- 0 6  
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Figure 4. Effect of the particle sizes on the correction factor. (A,)~, for settling of two solid spheres. 

defined as A/Am where A® is Stokes' correction factor for a single fluid sphere. The parameter F 
is explicitly related to the physical parameter ~* = dr for the cases of identical fluid particles 
and for a fluid particle in the vicinity of a plane interface. For equal fluid particles ~* = 
(F + F - ' ) -  2 and for fluid particle-plane interface ~* = l/2(F + F -1) - 1. Figure 3 shows examples 
of these limiting solutions, the results for arbitrary fluid particles with finite viscosities in which 

is a function of r,, r2, e -~ and e -B are illustrated in figure 4. 
The effect of another identical sphere or a plane fluid interface in the path or trail of a fluid 

sphere is to increase the resistance beyond that which it would experience in an infinite medium 
when moving with the same velocity. As the distance of separation increases, a-~oo, the 
solutions approach the single sphere solution of Hadamard and (A,)~-~ I whereas when the 
distance of separation decreases a-~O, providing the assumptions of quasi-steady creeping 
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motion are not invalidated, the correction factor (A,)~ increases rapidly from the Hadamard or 
Stokes solution. The effect of internal circulation in the dispersed phase is to reduce the 
changes in resistance, for a given separation, due to both the presence of other droplets/parti- 
cles and of plane solid/fluid/free interfaces. If one considers the interaction between a fluid 
droplet and a plane interface this reduction is substantial; furthermore, the smaller the ratio 
/~1[/~3 the larger the reduction. 

Resistance, for all surfaces, is increased by the same amount regardless of whether the fluid 
sphere is moving towards or away from the adjacent boundary. It seems natural to expect that 
the resistance be different according to whether the sphere is approaching or receding from the 
surface. It would be expected that the resistance suffered by an approaching sphere is greatest. 
This can be demonstrated using ideal fluid theory, Milne-Thompson (1950), which states that a 
sphere moving perpendicular to a wall is repelled by the wall whether the particle is directed 
towards or away from the wall--the magnitude of the force being the same in both cases. Thus 
inertia forces hinder the particle in the first case and assist it in the latter. One may infer that 
when inertial effects are sensible the particle resistance is least in the case where the sphere 
recedes from the surface. Experience suggests that the proximity of a boundary to a moving 
particle enhances the range of Reynolds number (based on the sphere diameter) over which the 
creeping motion equations are valid. Carty's (1957) experiments on a ball rolling in a viscous 
fluid showed that the resistance was directly poroportional to the velocity up to Reynolds 
numbers of the order 20 whereas the Stokes' law limit is in the region of 0.5. 

Conversely, for the motion of two identical fluid spheres in the same direction (UI =/-:2) the 
correction factor decreases as a decreases and is always less than the Hadamard and Stokes' 
value for finite separations. As the separation decreases (a-~0) the correction factor ap- 
proaches its minimum value at a = 0. For solid spheres this agrees with Fax6n's result of 
(A,)a = 0.6451, Fax6n & Dahl (1925). 

The solutions show that (arL and (a,)# depend also on the radii r~ and r2 of the particles. 
This is illustrated diagramatically in figure 4. Here results for two solid spheres are shown--the 
correction factor on particle 1, (a,),, ~: = a, as a function of F. Curves for constant values of/3 
are drawn. As is expected,/3 ~ - ~ ,  for a given value of a, the single fluid sphere solution is 
approached. By definition fl is based on particle size and distance from the plane z = 0 (~: = 0) 
and it is more instructive to follow the history of two particles of constant radii ratio rllr2. 
When rt/r2 = 2 the results are close to those for a single sphere. The force of the second sphere 
is, however, very much greater as can be seen by the lower curve for rl/r2 = 1/2. These results 
are as expected since a smaller particle will have less effect on the drag force on the larger 
particle and vice versa. In all cases the interaction is greater as the distance between the 
particles decreases, a ~ 0. 

The solution for two liquid droplets is contained between the limiting cases of a pair of solid 
spheres or a pair of gas bubbles. This is shown in figure 5. 

As was evident from figure 3, internal circulation within the dispersed phase reduces 
interparticle interaction. 

So far the translation velocities UI and U2 have been chosen arbitrarily. This is not possible 
if settling takes place in a gravitational field and the buoyancy forces must be related to the 

viscous drag forces. Thus 

4 3 ~ lrrt (Pt - P3)g = 6¢rp.3rt(an Ut + a12U2), [3.6] 

and 

4 3 "~ Irr2 ( ~ -  P3)g = 67r/~3r2(a2t UI + a22 U2). [3.7] 
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Figure 5. Effect of relative drop sizes on the correction factor, (A,),, for settling of two fluid spheres. 

Then if Ue # 0 

U__..!z = a22(rl/r2)2Ap - a12 
U2 a l l -  a12(rl/r2)3Ap [3.8] 

where Ap = (pl - P~)/(p2- p3) is a dimensionless density ratio. Thus for gravity settling problems 
the dimensionless groups, UI/U2, #l ,  f~2, Ap, a and B are all interconnected. In technical 
problems involving coalescence of droplets or settling of homogeneous solid particles when 
#! =/~2 and pl = p2 then the settling velocities depend only on/£1, a and/3. Furthermore, if the 
particles are the same size then/~ = - a  and UllU2 = 1. For the case of a particle approaching a 
flat interface, [72 = 0, then [3.6] and [3.7] reduce to 

4 
7rrz3(pl - P3)g = 61r/z3rlA, U! [3.9] 

and Aa can be obtained from the relevant solution shown in table 1. 
Apart from these simple cases the relation between the particle velocities can only be 

obtained by solution of [3.8]. Therefore, if, in the design of equipment, settling velocities are 
based on single particle relations the sign of (UI/[/2)® depends only on the sign of Ap. For large 
separations the velocities tend to the values predicted by the Hadamard-Rybczynski equation: 

[3.101 

This would mean for example that if a gravity settler was used to separate a liquid 
dispersion containing some particulate solids such that Pl < p3 < p2, i.e. Ap < 0 then single 
particle data would always predict separation of the liquid dispersed phase (1) and solid phase 
(2) from the continuous phase (3). 

For multiparticle situations 

U2 
U1 = f(Ap, ~d~3, ~d~3, a,/3). 
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Figure 6. Ratio of the settling velocities of a liquid droplet, phase 1, and solid sphere, phase 2, as a function 
of the separation distance ~. rl = r2 = r , / i t  = 1.0, #2 = :o. 
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Figure 7. Ratio of the settling velocities of a liquid droplet, phase 1, and solid sphere, phase 2, as a function 
of the separation distance ~. rt = r2 = r, ff~ = 10.0, ~/2 = ~o. 
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Detailed examination of the formal solution predicts that the particles will not always 
separate and entrainment of one of the phases may occur. Entrainment of a phase (2) droplet by 
a phase (1) droplet occurs when U2/UI > 0 and occurs when the geometric separation is less 
than some critical value e21 at which U2 = 0, UI # 0. Similarly entrainment of the phase (1) 
droplet by the phase (2) droplet occurs for geometric separations less than el2 at which UI = 0, 
U2 # 0. Examples of droplet-solid particle interactions are shown in figures 6 and 7 from which 
the critical separation for entrainment of either dispersed phase may be deduced (see also 
figures 17 and 18). 

4. STREAMLINES 

The stream function in each fluid region is given by [2.6]. The instantaneous stream surfaces 
are characterised by the values 0; = constant and the stream lines given by the intersection of 
these surfaces with the meridan planes. The stream lines are defined by: 

_ o¢,, a ¢ i  
d~b, - -~- • d~ +-~-  • d~/= 0, 

d ¢~ uei 

r/, ~ surfaces are defined by solving this The 
particular, on the fluid interfaces ~ = a, ~ =/3 stream function $i takes the values 

[4.1] 

and 

[4.2] 

first order ordinary differential equation. In 

1 2 ~bt=~b3=~R UI, s t=a,  [4.3.1] 

1 2 
02 = ~b3 = ~ R U2, ~: =/3. [4.3.2] 

The streamlines were evaluated by solving [4.2] using Merson's form of the Runge-Kutta 
method. 

Computat ional  procedure 

If one attempts to solve numerically [4.2] in a 7/-  ~: co-ordinate system, problems arise with 
infinite derivatives of f(7/, ~:). This is best seen by referring to figure 8 in which sketches of the 
"contour-type" streamlines are depicted for the majority of the geometric configurations for 
the three flow regions. For such contours a transformation to polar co-ordinates with an origin 
inside the contours was used. The transformation is illustrated on figure 9. An origin of the 
polar co-ordinate system is chosen, ORO, at ~: = ~:o, r /= rio. At a general point P on the stream line 
the co-ordinates (~:, 7) and (r', 0) are related thus: 

= ~:o+ r' sin O, [4.4.1] 

7? = ~/o + r' cos 0. [4.4.2] 

Then [4.2] becomes 

dr' = r'u,,i = f (r ' ,  0). [4.5] 
dO uoi 
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Fluid I 

Fluid 3 

Fluid 2 

l=lr 

U¢ 

Ur.i 

U 

~ ~ T  
~ o  .x  

7 

",1=0 

Figure 9. Illustration of transformation to polar co-ordinates. 

The velocity components (urn, ue~) which determine the derivatives (dr'/d/9) are related to the 

components in (~, rl) co-ordinates by: 

uel = u~i cos/9 + u~; sin 0, 

u0~ = ue~ cos/9 - u,i sin/9. 

[4.6.1] 

[4.6.2] 

For a complete trace of the contour,/9 traverses an angle 2~r. 
This transformation overcomes the problems in cases where both ~: and r/ and their 

corresponding velocity components u6 and u~ are close to zero. The solution to [4.5] is started 

at point S (figure 9) where/9 = 0, r '  finite. The solution is advanced in increments of/9 to the 

point T along the curve l~. The values of r '  and/9 are then reset to the ones corresponding to 
the point S and the solution again advances with negative /9 increments to point T along the 
curve 12. The coincidence of point T from both directions along curves Ii and 12 formed an 
independent check on the numerical procedure. 

Streamlines were computed for both relative motion (streamlines as they appear to an 

observer moving with one of the particles) and the absolute motion about the particles, giving 
streamlines as they appear to an observer fixed in space. The data is computed for all the cases 
listed in table 1, Rushton (1974). The streamlines were first computed in bipolar co-ordinates 

(~* = ~:/~:j, r/* = rl/~r) and then, in a more useful graphical format, in dimensionless cylindrical 
co-ordinates (R* = R/c,  z* = z/c).  The streamlines for a general fluid-fluid system and a 

particular geometry (rb rE) lie between two limiting cases; namely a pair of solid spheres and a 
pair of gas bubbles. To cover the range the dimensionless viscosity groups 

/.L~ : It~l - / ' ~ 3  a n d  / ~  = -~'2 - ~/'3 
/l, 1 -J- ]d, 3 / / ,2+/.I ,3 

are used. Both /z*  and ~ belong to the finite range ( -1 ,  +1). 
(a) Streamlines in sys tems  o[  two particles. If we consider particles of the same radii two 

cases are of immediate interest: (i) where the particles are approaching with equal velocities 
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and (ii) where the particles are travelling in the same direction with zero relative velocity. For 
the first case, results showing absolute motion of fluid and spheres are shown in figure 10. In 
both cases the particle radii and separation distance are the same, the variations are due to the 
fluidity of the droplets vs solid spheres. For the case of the two solid particles the streamlines 
passing through the particles are parallel to the direction of motion as is expected whereas in 
the fluid droplets these streamlines are reflected as a result of internal circulation. This 
deflection increases as one moves from the axis of symmetry. The streamlines in the continuous 
phase are also affected. For these particular examples the motion about both particles must be 
symmetric about the axis zlc = z~ = 1.0. A check on the numerical procedure is possible by 
comparing the flow patterns obtained in the region z*> 0 for approaching droplets with the 
results obtained for a droplet approaching a free surface. These were identical, z* = 0 for these 
cases is a plane on which both the normal velocity and the tangential stress vanish. Streamlines 
for the systems in which there is zero relative velocity between the particles are shown in figure 
11. Similar observations can be made to those in figure 10. Streamlines for relative motion in 
both droplets in this particular format can be obtained by considering the equivalent problem of 
the continuous~hase fluid, 3, flowing past two identical liquid droplets such that e remains 
constant--a special case of fluidisation. The results are shown in figure 12. 

Problems related to gravity settling of droplets of different size are illustrated in figure 13. 
Such interactions occur in flocculating dispersions. As was observed earlier the larger effects 
are experienced by the smaller droplets, c.f. section 3. A droplet approaching a stationary 
droplet can also be investigated. An example is shown in figure 14. This shows the relative 
motion and circulation set up in the larger droplet. Note that the centre of circulation is no 
longer coincident with the plane z* = -h21c. 
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2 . 0 t - I I  I ' /  1 I 2.0 
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- I . 0  - I '  

- 2 . 0 H I  I I I I I - 2 . 0  

-3 -OI - t  I ~ / '~ I - 3 - 0  
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1"0 2-0 3-0 ,'- .0 5-0 
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Figure 10. Streamlines for absolute motion in a system. (a) Two approaching identical fluid droplets. (b) 
Two approaching solid spheres. 
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Figure 1 I. Streamlines for absolute motion in a system. (a) Two identical fluid droplets travelling in the 
same direction with zero relative velocity. (b) Two identical solid spheres travelling in the same direction 

with zero relative velocity. 
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Figure 12. Streaming motion relative to two identical stationary fluid drops. 
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Figure 13. Streamlines for absolute motion in settling of two fluid droplets. 
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Figure 14. Streamlines generated by the motion of a droplet towards a stationary droplet. 
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(b) The lim#ing case of a particle approaching a plane interface (solid orfluid). This can be 
considered by letting either r~ or r2 tend to infinity. Examples of streamlines for the solid 
sphere-solid plane and fluid drop--fluid interface problems are shown in figure 15. The 
interesting regions are within the particle and within the continuous phase liquid film separating 
the two interfaces. The influence of the fluidity of the droplet is evident from the diagrams. For 
relative motion, the effects of the viscosity ratio/z~' and the distance of separation (measured 
by a) on the variation of the stream function within the droplet at the plane z* = h~lc are 
summarised in figure 16. For a solid particle approaching a solid interface the stream function is 
zero at all values of a. As the viscosity of the droplet decreases internal circulation increases, 
moving from the abscissa to curve (b). The distance of separation has a much larger effect, as a 
decreases (~UI)r increases rapidly; compare curve (b) a = 1 with (c) a = 0.5. 

I~ ~ ~ ~ l#~ "#~ - .o I 

~ ~ ~ 4~ ~ 

0 1"0 2-0 3"0 4-0 

(a) RIc = 

Cl~. 
6 6  • 

! I C3 

c -  g 

g -  

I 

° 

0 

i # / # /  . I 

J 
2 , , ~ 1  

1.0 2.0 3'0 4-0 

(b )  R/C b 

Figure 15. Streamlines for a particle approaching a flat interface. (a) Solid sphere-solid plane. (b) Fluid 
drop-fluid interface. 
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0"08 / c~.= I 
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0 0.2 0-/. 0"6 0"8 1-0 

R/r 1 I~ 

Figure 16. Variation in the stream function, ~/Ut, with radial position at the plane Z x = htlc for a fluid 
drop-fluid interface. 
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5. APPLICATIONS 

(a) Gravity settling. In section 3 expressions for drag coefficients were presented. These can 
be used to compute settling velocities for any system of two particles providing the basic 
conditions relating to the applicability of the equations are met. In settling there are problems 
relating to entrainment particularly when the system involves liquid droplets and solid particles 
and droplets and air bubbles. In this context entrainment refers to particles settling against the 
natural buoyancy force. This force is effectively neutralised by the drag force induced by the 
other particle(s) in the system. The liquid-solid particle interaction is experienced in the process 
of liquid extraction when solid particles may enter the plant with the feed stream. These solid 
particles interfere with dispersion separation and may, under certain circumstances, cause 
liquid droplets to be entrained from the settlers without separation. In other circumstances solid 
particles may be entrained into the dispersion and interfere with the droplet coalescence 
process. Both conditions can lead to processing problems. Air-liquid interactions are encoun- 
tered in flotation processes where air bubbles are used to augment settling of droplets from a 
liquid. 

Some insight into parameters influencing these interactions can be gained by considering 
various two particle systems. The present solution can be used to obtain an estimate on the 

effect of the physical properties of the phases, pi,/zi (i = 1,2, 3) and geometric parameters r i, hi 
(j = 1, 2). 

Consider first the case of a solid particle and liquid droplet in a second immiscible liquid 
phase, 3. Then entrainment of either particle may take place if pl < p3 < p2, where the subscripts 
1 and 2 designate the liquid droplet and solid respectively. The equations relating the settling 
velocities are as previously described [3.8]. The condition for entrainment of the liquid droplet 
by the solid particle is that u~ > 0. This will be dependent on Ap,/i~,/~2, r2/r~ and ~. By solving 
[3.6] and [3.7] the limiting condition of neutral buoyancy of the liquid droplet, U, = 0, 
representing the boundary between separation and entrainment, can be computed. Results are 
shown in figure 17a. The definition of the dimensionless density difference is modified so that it 
is always positive, thus Ap'= (p3-pl)l(p2-p3). On figure 17a conditions above the curve 
correspond to particle separation and ultimate settling and separation of the two dispersed 
phases. At large distances of separation UI and U2 will approach the values predicted by 
Hadamard & Stokes' equations respectively. Below the curve the droplet will be entrained in 
the wake of the solid sphere. Entrainment is seen to be very sensitive to the particle radii. As 
expected, as rdr2 gets smaller the droplet is entrained more easily. The effect of the droplet 
viscosity can also be seen from the graph. In all cases as Ap' increases the minimum distance of 
separation • at which entrainment can take place also decreases. 

The problem of entrainment of the solid particle, using the criterion U2 < 0, can be obtained 
in a similar manner. The results are shown in figure 17b. The ordinate now is Ap' at Ud U~ = O. 
A similar set of curves are obtained for various radii. With the definitions shown on this figure 
conditions for entrainment lie above each curve. 

The problems of interaction between gas bubbles and liquid droplets leading to entrainment 
of the liquid is amenable to the same approach. Here p~(-~0)< P3 < p2. The results, analogous 
to those in figure 17b, are shown in figure 18. The formats presented in figures 17 and 18 allow 
the critical separation to be established for a particular system providing pi, tz~ and rj are 
known. 

(b) Droplet coalescence. This is important in many physical, geophysical and chemical 
engineering processes and a good deal of theoretical and experimental research has been 
carried out to investigate coalescence of a drop at an interface and coalescence between pairs 
of drops. This research has confirmed that the rate determining step is in the drainage of the 
film of continuous phase fluid, 3, trapped between the advancing interfaces. Various attempts 
have been made to model this process, a review up to 1971 is given by Jeffreys & Davies. Most 
models neglect the fluidity of the drop and use boundary conditions at each interface 
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Figure 18. Effect of the density Ap' and the ratio of the particle radii on the critical separation distance of 
the particles. Gas bubble-liquid drop interaction. 

appropriate to a solid/liquid system. To illustrate the influence of the fluidity of the dispersed 
phase consider the simple geometric conditions proposed by Gillespie & Rideal (1956) of a 
spherical drop approaching a flat fluid interface. The analogous condition for coalescence of 
two equal drops was presented by McAvoy & Kintner (1965). For drainage of the film of 
continuous phase, in cylindrical co-ordinates the radial flow of phase 3 fluid between a drop and 

interface was shown by Gillespie & Rideal, assuming Uz ~ UR, to be 

3 U R  
UR(z, R) = z ( ~ -  z) ~ ,  [5.11 

using boundary conditions: UR(z, R) = 0 at z = 0 and z = #. This solution therefore neglects the 
fluidity of the drop and bulk fluid phase, 2. Equation [5.1] can be written in dimensionless form: 

UR = 3(#1c - z /c) (R/c)(z lc)  [5.2] 
U ( d c )  3 

From the geometry 

s r = hi - (rl 2 -  R2) 1/2 [5.3] 
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2. 

3. 

Table 2. Comparison with published models for R* = 0.5 

a =0.5 a =0.25 a =0.125 

hllrl 1.13 1.03 1.008 
dri = (h~ - rOIrl 0.13 0.03 0.008 

~1 = t~2 = 10.0 
(Us)~=o 0.763 1.574 3.179 
( UR)¢=,, 0.837 1.611 3.198 
(Us)m.~m,., 0.837 1.613 3.209 

/~t =/i2 = 1.0 
( Us),=o 0.647 1.442 3.040 
( Us),=a 0.708 1.477 3.058 
( Us)m~imm 0.865 1.673 3.277 

Charles & Mason Model [in Jeffreys & Davies (1971)] 
~t~l = ~ 2 =  0 
(Us)~=Oa,d~ 0.000 0.000 0.000 
( Us)maxim., 1.208 2.146 4.832 

and 

- ~,~] ]. [5.41 

The solution for this problem can be obtained from the present work allowing for the finite 
viscosity of phase I. The results are shown in table 2. This shows the surface velocities at each 
interface, (uR)~=o and (uR)~=~, and the maximum velocity in the film. The results computed for the 

case ~l =/2a--) 0% figure 2, are identical to those predicted from Gillespie and Rideal's work and 
result in a parabolic film velocity. As the fluidity of the drop is taken into account the surface 

velocities increase from zero and thus the velocity profile flattens. This effect becomes more 

pronounced as/~1 decreases and as the distance of separation of the interfaces decreases (a 
decreasing). The velocity rather than being parabolic tends to plug flow. This will have a 
pronounced effect on the film drainage rate and therefore on droplet coalescence. Notice that 
for the drop-plane interface geometry the surface velocities at finite values of/Zl are not equal 
at each interface. This difference is due to the difference in the radii of curvature. 
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APPENDIX 

A l(a,/3) = A* + gtg2{-  Yn(~8 - a)} - I x 3  2 Y,([3 - a) + lxlg2Fn(fl, a) + ~lg3{Xn(fl - or) + Gn(fl)} 

+ g2/z3{Xn(/3 - a )  + G,(a)}, 

A~(a, fl) = g,tt2{e-2XQ.(fl) - e-2vQ~(a)} + l~ .32{e -2Xpn([~)  - e-2rp.(a)} 

--  g l g 3 { e - 2 Y Q n ( a  ) + e-2Xp,,(~)}- g 2 g 3 { e - 2 X Q n ( f l  ) + e - 2 V p n ( v t ) }  , 

A*(a,/3) = g lg~{e2rQ.( -a)  - e2XQ.(-/~)} 

+ l~32{e2rP.(-a) - e2Xp.(-fl)  - i~,/za{e2rQ.(-a) + e2Xpn(-fl)} -/z2~3{e2rp~(-a) + e2XQd-$)}, 

P . (O  = 

G ( f )  = 

Y.(f)  = 

V.(f)  = 

T.(f)  = 

X. ( f )  = 

& ( O  = 

Z ~ ( O  = 

E. ( f )  = 

G . (O = 

F~(fb f2) = 

~£1P.,2Tn(3 - 0l)  - 2j~32Sn(j~ -- Or) --/J,3(l,t i + ~.L2) Vn( fl  - a ) ,  

(2n + 1) sinh 2 f +  2 cosh 2~, 

(2n + 1) 2 sinh 2 ~ + (2n + 1) sinh 2~ + 2, 

(2n + 1) sinh 2 ~ + 2 sinh (2n + 1)~, 

(2n + 1) sinh 2f - 2 sinh (2n + 1)~, 

(2n + 1) 2 sinh 2 ~ - 4 sinh 2 (n + 1/2)~, 

(2n + 1) 2 sinh 2 f + 4 cosh 2 (n + 1/2)~, 

cosh (2n + 1)~ - cosh 2 ~, 

cosh (2n + 1)f + cosh 2¢, 

(2n - 1)(2n + 3) sinh 2 ~ sinh (2n + 1)~:, 

- (2n  - 1)(2n + 3) sinh 2 f, 

(2n + 3)(2n - 1)(2n + 1) sinh fl sinh & sinh (f, - h).  


